

Contents

	Overview
	Installation

	Documentation

	Development

	Installation

	Usage
	Economics

	Helpers

	Logger

	Debugging

	Reference
	oemof.tools package

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development

	Authors

	Changelog
	0.4.2 (2022-06-15)

	0.4.1 (2021-02-21)

	0.4.0 (2020-05-11)

Indices and tables

	Index

	Module Index

	Search Page

Overview

	Documentation
	[image: Documentation Status] [https://readthedocs.org/projects/oemof-tools]

	Tests
	
[image: Travis-CI Build Status] [https://travis-ci.org/oemof/oemof-tools] [image: AppVeyor Build Status] [https://ci.appveyor.com/project/oemof/oemof-tools] [image: Requirements Status] [https://requires.io/github/oemof/oemof-tools/requirements/?branch=master]

[image: Coverage Status] [https://coveralls.io/r/oemof/oemof-tools] [image: Coverage Status] [https://codecov.io/github/oemof/oemof-tools]

[image: Scrutinizer Status] [https://scrutinizer-ci.com/g/oemof/oemof-tools/] [image: Codacy Badge] [https://app.codacy.com/gh/oemof/oemof-tools?utm_source=github.com&utm_medium=referral&utm_content=oemof/oemof-tools&utm_campaign=Badge_Grade_Dashboard] [image: CodeClimate Quality Status] [https://codeclimate.com/github/oemof/oemof-tools]

	Package
	
[image: PyPI Package latest release] [https://pypi.org/project/oemof.tools] [image: PyPI Wheel] [https://pypi.org/project/oemof.tools] [image: Supported versions] [https://pypi.org/project/oemof.tools]

[image: Supported implementations] [https://pypi.org/project/oemof.tools] [image: Commits since latest release] [https://github.com/oemof/oemof-tools/compare/v0.4.2..dev]

Tiny tools of the oemof project.

	Free software: MIT license

Installation

pip install oemof.tools

You can also install the in-development version with:

pip install https://github.com/oemof/oemof-tools/archive/dev.zip

Documentation

https://oemof-tools.readthedocs.io/

Development

To run the all tests run:

tox

Note, to combine the coverage data from all the tox environments run:

	Windows

	set PYTEST_ADDOPTS=--cov-append
tox

	Other

	PYTEST_ADDOPTS=--cov-append tox

Installation

At the command line:

pip install oemof.tools

Usage

The oemof tools package contains little helpers to create your own application. You can use a configuration file in the ini-format to define computer specific parameters such as paths, addresses etc.. Furthermore a logging module helps you creating log files for your application.

List of oemof tools

	Economics

	Helpers

	Logger

	Debugging

Economics

Calculate the annuity. See the API-doc of annuity() for all details.

Helpers

Excess oemof’s default path. See the API-doc of helpers for all details.

Logger

The main purpose of this function is to provide a logger with well set default values but with the opportunity to change the most important parameters if you know what you want after a while. This is what most new users (or users who do not want to care about loggers) need.
If you are an advanced user with your own ideas it might be easier to copy the whole function to your application and adapt it to your own wishes.

define_logging(logpath=None, logfile='oemof.log', file_format=None,
 screen_format=None, file_datefmt=None, screen_datefmt=None,
 screen_level=logging.INFO, file_level=logging.DEBUG,
 log_path=True, timed_rotating=None):

By default down to INFO all messages are written on the screen and down to DEBUG all messages are written in the file. The file is placed in $HOME/.oemof/log_files as oemof.log. But you can easily pass your own path and your own filename. You can also change the logging level (screen/file) by changing the screen_level or the file_level to logging.DEBUG, logging.INFO, logging.WARNING…. . You can stop the logger from logging the oemof version or commit with log_version=False and the path of the file with log_path=False. Furthermore, you can change the format on the screen and in the file according to the python logging documentation. You can also change the used time format according to this documentation.

file_format = "%(asctime)s - %(levelname)s - %(module)s - %(message)s"
file_datefmt = "%x - %X"
screen_format = "%(asctime)s-%(levelname)s-%(message)s"
screen_datefmt = "%H:%M:%S"

You can also change the behaviour of the file handling (TimedRotatingFileHandler) by passing a dictionary with your own options (timed_rotating).

See the API-doc of define_logging() for all details.

Debugging

SuspiciousUsageWarning

The SuspiciousUsageWarning can help to find untypical usage of oemof’s
libraries. However, if you know what you are doing such warnings might be
annoying. Therefore, it is possible to control the appearance of this warning.

switch on SuspiciousUsageWarning
warnings.filterwarnings("always", category=SuspiciousUsageWarning)

raise an error instead of a warning
warnings.filterwarnings("error", category=SuspiciousUsageWarning)

switch off SuspiciousUsageWarning
warnings.filterwarnings("ignore", category=SuspiciousUsageWarning)

For more information about the handling of warnings see the
warnings section [https://docs.python.org/3/library/warnings.html] in the
python documentation.

Reference

	oemof.tools package
	Submodules

	oemof.tools.debugging module
	ExperimentalFeatureWarning

	SuspiciousUsageWarning

	oemof.tools.economics module
	annuity()

	oemof.tools.logger module
	define_logging()

	extend_basic_path()

	get_basic_path()

oemof.tools package

Submodules

oemof.tools.debugging module

Module contains tools facilitating debugging

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/tools/economics.py

SPDX-License-Identifier: MIT

	
exception oemof.tools.debugging.ExperimentalFeatureWarning

	Bases: UserWarning

Warn the user about use of experimental features.

New modules first go to “experimental” ti highlight their unmature state.
Sometimes, functionality is added to existing code. We use this warning
to warn users in these cases.

	
exception oemof.tools.debugging.SuspiciousUsageWarning

	Bases: UserWarning

Warn the user about potentially dangerous usage.

Some ways of using oemof are not necessarily wrong but could lead to
hard to find bugs if done accidentally instead of intentionally. We
use these warnings, and you can do too ;), in your code to warn users about
these cases. If you know what you are doing and these warnings point you to
things you are doing intentionally, you can easily switch them off.

Note

TODO: Fix ref!
See SuspiciousUsageWarning for more
information.

Examples

>>> import warnings
>>> warnings.filterwarnings("ignore", category=SuspiciousUsageWarning)

oemof.tools.economics module

Module to collect useful functions for economic calculation.

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/tools/economics.py

SPDX-License-Identifier: MIT

	
oemof.tools.economics.annuity(capex, n, wacc, u=None, cost_decrease=0)

	Calculates the annuity of an initial investment ‘capex’, considering
the cost of capital ‘wacc’ during a project horizon ‘n’

In case of a single initial investment, the employed formula reads:

\[\text{annuity} = \text{capex} \cdot
 \frac{(\text{wacc} \cdot (1+\text{wacc})^n)}
 {((1 + \text{wacc})^n - 1)}\]

In case of repeated investments (due to replacements) at fixed intervals
‘u’, the formula yields:

\[\text{annuity} = \text{capex} \cdot
 \frac{(\text{wacc} \cdot (1+\text{wacc})^n)}
 {((1 + \text{wacc})^n - 1)} \cdot \left(
 \frac{1 - \left(\frac{(1-\text{cost_decrease})}
 {(1+\text{wacc})} \right)^n}
 {1 - \left(\frac{(1-\text{cost_decrease})}{(1+\text{wacc})}
 \right)^u} \right)\]

	Parameters:

	
	capex (float) – Capital expenditure for first investment. Net Present Value (NPV) or
Net Present Cost (NPC) of investment

	n (int) – Horizon of the analysis, or number of years the annuity wants to be
obtained for (n>=1)

	wacc (float) – Weighted average cost of capital (0<wacc<1)

	u (int) – Lifetime of the investigated investment. Might be smaller than the
analysis horizon, ‘n’, meaning it will have to be replaced.
Takes value ‘n’ if not specified otherwise (u>=1)

	cost_decrease (float) – Annual rate of cost decrease (due to, e.g., price experience curve).
This only influences the result for investments corresponding to
replacements, whenever u<n.
Takes value 0, if not specified otherwise (0<cost_decrease<1)

	Returns:

	float – annuity

oemof.tools.logger module

Helpers to log your modeling process with oemof.

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/tools/logger.py

SPDX-License-Identifier: MIT

	
oemof.tools.logger.define_logging(logpath=None, logfile='oemof.log', file_format=None, screen_format=None, file_datefmt=None, screen_datefmt=None, screen_level=20, file_level=30, log_path=True, timed_rotating=None)

	Initialise customisable logger.

	Parameters:

	
	logfile (str) – Name of the log file, default: oemof.log

	logpath (str) – The path for log files. By default a “.oemof’ folder is created in your
home directory with subfolder called ‘log_files’.

	file_format (str) – Format of the file output.
Default: “%(asctime)s - %(levelname)s - %(module)s - %(message)s”

	screen_format (str) – Format of the screen output.
Default: “%(asctime)s-%(levelname)s-%(message)s”

	file_datefmt (str) – Format of the datetime in the file output. Default: None

	screen_datefmt (str) – Format of the datetime in the screen output. Default: “%H:%M:%S”

	screen_level (int) – Level of logging to stdout. Default: 20 (logging.INFO)

	file_level (int) – Level of logging to file. Default: 30 (logging.WARNING)

	log_path (boolean) – If True the used file path is logged while initialising the logger.

	timed_rotating (dict) – Option to pass parameters to the TimedRotatingFileHandler.

	Returns:

	str (Place where the log file is stored.)

Notes

By default the INFO level is printed on the screen and the DEBUG level
in a file, but you can easily configure the logger.
Every module that wants to create logging messages has to import the
logging module. The oemof logger module has to be imported once to
initialise it.

Examples

To define the default logger you have to import the python logging
library and this function. The first logging message should be the
path where the log file is saved to.

>>> import logging
>>> from oemof.tools import logger
>>> mypath = logger.define_logging(
... log_path=True, timed_rotating={'backupCount': 4},
... screen_level=logging.ERROR, screen_datefmt = "no_date")
>>> mypath[-9:]
'oemof.log'
>>> logging.debug("Hallo")

	
oemof.tools.logger.extend_basic_path(subfolder)

	Returns a path based on the basic oemof path and creates it if
necessary. The subfolder is the name of the path extension.

	
oemof.tools.logger.get_basic_path()

	Returns the basic oemof path and creates it if necessary.
The basic path is the ‘.oemof’ folder in the $HOME directory.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Bug reports

When reporting a bug [https://github.com/oemof/oemof-tools/issues] please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

oemof-tools could always use more documentation, whether as part of the
official oemof-tools docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/oemof/oemof-tools/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions are welcome :)

Development

To set up oemof-tools for local development:

	Fork oemof-tools [https://github.com/oemof/oemof-tools]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com:oemof/oemof-tools.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes run all the checks and docs builder with tox [https://tox.readthedocs.io/en/latest/install.html] one command:

tox

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

	Include passing tests (run tox) [1].

	Update documentation when there’s new API, functionality etc.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to AUTHORS.rst.

[1]
If you don’t have all the necessary python versions available locally you can rely on Travis - it will
run the tests [https://travis-ci.org/oemof/oemof-tools/pull_requests] for each change you add in the pull request.

It will be slower though …

Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

Authors

	Caroline Möller

	Guido Plessmann

	Hendrik Hyskens

	Simon Hilpert

	Stephan Günther

	Uwe Krien

Changelog

0.4.2 (2022-06-15)

	Add Python support for Python 3.10 and drop support for 3.7

	Move CI from Appveyor and Travis to Github Actions

	Use Black Code Style [https://black.readthedocs.io] for oemof.tools

	Change default logging level for file logging from DEBUG to WARNING

0.4.1 (2021-02-21)

	Fix compatibility problem (by naming submodules in init script)

0.4.0 (2020-05-11)

	Move the code of the oemof.tools repository to a stand-alone repository.

	Use cookiecutter to create a wider testing structure and a more standardised
package structure.

	Switch from nose to pytest

	Remove the version or commit logger

	Add test to increase test coverage

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 oemof	

 	
 	
 oemof.tools.debugging	

 	
 	
 oemof.tools.economics	

 	
 	
 oemof.tools.logger	

Index

 A
 | D
 | E
 | G
 | M
 | O
 | S

A

 	
 	annuity() (in module oemof.tools.economics)

D

 	
 	define_logging() (in module oemof.tools.logger)

E

 	
 	ExperimentalFeatureWarning

 	
 	extend_basic_path() (in module oemof.tools.logger)

G

 	
 	get_basic_path() (in module oemof.tools.logger)

M

 	
 	
 module

 	oemof.tools.debugging

 	oemof.tools.economics

 	oemof.tools.logger

O

 	
 	
 oemof.tools.debugging

 	module

 	
 oemof.tools.economics

 	module

 	
 	
 oemof.tools.logger

 	module

S

 	
 	SuspiciousUsageWarning

 nav.xhtml

 Table of Contents

 		
 Contents

 		
 Overview

 		
 Installation

 		
 Documentation

 		
 Development

 		
 Installation

 		
 Usage

 		
 Economics

 		
 Helpers

 		
 Logger

 		
 Debugging

 		
 SuspiciousUsageWarning

 		
 Reference

 		
 oemof.tools package

 		
 Submodules

 		
 oemof.tools.debugging module

 		
 oemof.tools.economics module

 		
 oemof.tools.logger module

 		
 Contributing

 		
 Bug reports

 		
 Documentation improvements

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Tips

 		
 Authors

 		
 Changelog

 		
 0.4.2 (2022-06-15)

 		
 0.4.1 (2021-02-21)

 		
 0.4.0 (2020-05-11)

_static/file.png

_static/minus.png

_static/plus.png

